Precalculus

6-03 Vectors

Vector

- ullet _____line segment $ec{v}$
- Has _____and ____
- Magnitude $\|\vec{v}\|$ is ______ of the segment

Component form

- $\vec{v} = \langle v_1, v_2 \rangle$
- _____point
- $\vec{v} = \langle q_1 p_1, q_2 \overline{p_2} \rangle = \langle v_1, v_2 \rangle$
- $\|\vec{v}\| = \sqrt{(q_1 p_1)^2 + (q_2 p_2)^2}$ = $\sqrt{v_1^2 + v_2^2}$

Find the component form of the vector and its magnitude if its initial point is (1, 7) and its terminal point is (4, 3).

Vector Operations

Scalar Multiplication

- $k \vec{v} = \langle kv_1, kv_2 \rangle$
- If *k* is negative it goes in ______direction

Add

- Add _____components
- $\vec{v} + \vec{u} = \langle v_1 + u_1, v_2 + u_2 \rangle$

 $\langle 2, 3 \rangle + \langle 1, 0 \rangle$

Let $\vec{u} = \langle 1, 6 \rangle$ and $\vec{v} = \langle -4, 2 \rangle$, find $3\vec{u}$

Let $\vec{u}=\langle 1, 6 \rangle$ and $\vec{v}=\langle -4, 2 \rangle$, find $2\vec{v}+\vec{u}$

Unit Vectors

Vector in the ______direction, but magnitude is ______

$$\circ \quad \hat{u} = \frac{\vec{v}}{\|\vec{v}\|}$$

- Special Unit Vectors
 - o î =____

Linear Combination Form

• $3\hat{\imath} + 2\hat{\jmath} = \langle 3, 2 \rangle$

Let $\vec{v} = 3\hat{\imath} - 4\hat{\jmath}$ and $\vec{w} = 2\hat{\imath} + 9\hat{\jmath}$, find $2\vec{v} + \vec{w}$.